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Abstract
The heat transfer problems in thermodynamics are usually modeled by partial differential
equations. In recent years, the theory of difference equations has found its applications in
many aspects [1,2,3]. In this paper, we derived solutions for the difference equations of
one-dimensional heat transfer boundary value problems. Symbolic operator theory and

orthogonality formulas are employed.

Key words: Sequence, convolutional product, symmetric matrix, orthogonality, difference
equation, heat transfer equation.

1. Introduction
An ordered set of numbers (real or complex) form a sequence, which may symbolically be denoted

by

t={fo, f1, Fovmn frrd ={ R} Vos.
Two sequences may be added in the usual manner

(f+9), =f +9,, k=012..
and multiplied under "convolutional" product

k
(f*ow=a fixg, k=012,.. ,
i=0
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where (f +g), and (f* g), denotesthek-thterminthesequence f +g or f*g respectively.
A sequence with the first term (k=0) equalsto a and all the remaining terms equal to zero is
denoted by a , that is
a ={a,0,0,...,0,..}=a{10,0,..,0, ..} =a 1,
where i:{lo, 0,0,...} is often written as 1for simplicity.
An important sequence % is defined by
7n={0100,..,0,.. }.
By applying the convolutional product defined above, we have
72={0,0200,..},
7®={0,0010,..},

and in general
¥
hm :{le}k:O'
where
il k=m,
dm =1
70 ktm

and 7° is defined by {10, 0,0,...} =1.Inthissense, 7" is often called the Dirac sequence. The

convolutional product of 2™ with a sequence f is
A™* £ ={0,0..,10,. }{f, 1, f2 0, fi,. }
={0,0,..., fo, 1, f2, ...},
which may be obtained by shifting every term in f by m positions to the right and filling zeros in the
first mempty positions. The product sign* isusually omitted, thatis, 2™ * f isusually designated as
n™f for simplicity. 2™ is usually treated as an operator.

Another important operator known as the shifting operator is defined by

E{ fiheo ={ fkaatio ={f1 f2, T30 s fiy o}

or simply

Ef ={fuilreo-

Applying this operator mtimes to a sequence f yields

Em{fk}tzo :{fk+m}§:o :{ fma fm+1a fm+2a e fm+k! }' m3 0,

which is obtained by shifting every term in f by m positions to the left. In this sense, the sequence
E- ™ f isdefined by shifting every terminf to the right and m zeros are added before fo. Thatis,
E ™ ={0,0,..,fg f, T, .},
which is exactly the same as #™f . Hence E"™ =#™. Notethat EM2™f =f but AME™f t f.
To see this, note that
nEF={0f,f,, fsf,.}=f- f°,
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n?E2 £ ={0,0, 1}, f,, fg, T4, ..} = f - fn0- fpt,
n3e3 £ ={0,0,0,f5, fy, ..} = f - fn0- fat- f,02,

and in general
RTE™ £ =™ fr, Fress s Frneker o hreg =1 000y oy Frnas oo s ks o Jo M2 0.

So we have
0 2 B
AMEMf=f - fgn® - fat- 0% - - ™ =f - § fA . (A)
i=0

The Dirac sequence operator 7™ may also be treated as an ordinary variable in a formula. For

instance,
T =1+an+(@nf+
¥
=4 @n -{1aa }={ I‘}ko,alo,
k=0
and
.2 A
! -1, 11 zigi+ih+8éhg +...g
a-nhn al——h ag a e g P
1 ¥
=g{ k}k Oz{a kl}k 0»atl
The "derivative" of asequenceis defined by
D{ fk}i:o :{(k+1) fk+1}?f=o
In particular,
DA™ =mr™ !
and
210 S
Dg———a(k+1) ={123 .., k+1,..}. (B)

he =0

The complete theory that explains our approach can be found in Cheng [3].
2. Theonedimensional heat transfer equation

Consider the heat distribution problem for a finite "lumped rod” . Suppose the lumps on the rod can
be labeled by a consecutive set of integers. Let U S) be the temperature at the integral position k and
integral timet of the rod. At timet, if the temperature U ("), is higher than U, heat will flow from
the point k-1 to k. The amount of increase in temperature is UIEHD - Ulgt) , and it is reasonable to
postulate that the increase is proportional to the difference U S_) 1~V S) ,say, dU |£t-)1 -U lgt)) where
d is a positive diffusive constant. Similarly, heat will flow from the point k+1 to k. Thusit is

reasonable that the total effect is
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t+1) t) — t t t t
00 <ol uP)apll - uf)
or

Ui U0 =dlu, - 0 i) @
In steady state, Ulgtﬂ) - Ulﬁt) =0. Hence

t t t) _
ul - 200 +ul) =o. )

This equation can be solved by the method of "separation of variables" as described in [3]. Let

U S) =aby, substituting thisinto (2), we have

by.1- 2by +by 4y =0. (©)
By applying the shifting operator E, equation (3) may be written as
E?b - 2Eb +b =0, &
where
b ={bw}t-o-

Multiplying each term of (4) by 72, and making use of the formula (A), we have
(b- by - byn)- 2n(b - b,)+n%b =0.
Solving for b, we get
= Dga c O
el-ng

where
c=by+(b,- 2by).

By evaluating the convolutional product of ¢ with Dgeihg whichisgiven by (B), we obtain
el-ng

b ={by,(b; - 2by), 0,0,.. }*{1 2 ..., (k +2),.. }
={bo(k+1)+(b1- 2bo) ko -
And the solution of (2) takesthe form

U|(<t) =ay(bo +(b1- bo)k),
where by and b; aretwo undetermined coefficients that can be obtained by subsidiary conditions.

Suppose the boundary conditions are given by

U((]t):AO, U(Lt):BO’

then
ul) =aibe = A
and
U(Lt) =ay(bg +(b1- bo)L) = By
or
a0y =T (Bo+ (L ) =20y

Hence the solution of (2) for the steady state becomes



U(k‘) =

where Cp = BOLAO.

In general U&”l) - U(kt) 1 0. Equation (1) may be written as

U =qu ), +(- 2d)ul) +aut),.
Let Ul((t) =atby asbefore, we have

a.qby =da,by, +(1- 2d)a b, +daby,,.
Dividing eachterm by a; and letting

iy _dbyy +(1- 2d)by +dbyy

=1,
a; by
There are three casesto consider.
If |I |>1,then
ag=lay =%, =..=1 Ma,,

Weseethat @; ® ¥, as t ® ¥ . Hence (7) cannot have asolution with || | >1.
If |I|=1,then

Aty =8¢ =.... =@ =constant.

—Ao+@k:/$0+cok, k=0,142..,L; t=012...

(6)

()

®)

And (8) isreduced to (3) since d * 0. Henceinthiscase (1) hasa‘steady state’ solution of the form

ul) =A+ck, k=012, L; t=012... .

If |I|<1,then a; =1'ag and by ;+gby +by,; =0,

where
1-2d -1
—q
By the same procedure as we have used in deriving from (3) to (6), we see that
b=y & =21 19 4y
n2+gn+l a-bén-a h-bg
where
c=bg+(b; +byg)n
and
j .2
a=-9+ [89 1 p=.9. |89 1 ap=1
2 |e2¢ 2 \e2g
Since —:{- k'l}, L:
h-

€)

(10)

75
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By evaluating the convolutional product of Lb with {akﬂ - bk+1} , we obtain

b —ib{bO by+bg,0,0,... }* {a- b,a- b?,.., ak*"- bk+l,...}

1

:E{b ( kel bk+1) (bs +bog)(ak - bk)}ﬁzo- (11)

Hence (1) has a'transient’ solution

US) :%(bo(ak+l_ bk+1)+(bl+b0g)(ak ) bk)).

By superposition, the general solution of (1) will be

t
t | a
Ul = Avck+ — (bo(a"+1 - b'<+1)+ (by + bog)(ak - bk)), 12
where A, Cand by, b, arefour coefficients to be determined by initial and boundary conditions.
Suppose the boundary conditions for (1) are given by
vl =na,ull =B, t=012.. .
Then,as t® ¥, 11 =0 sothat U¥)=A=p, U¥)=A+cL=B, hence

and

() A+ B Al o+ 8 (bo(ak+l' bk+l)+ (b1+b09)(ak ; bk))'

For t3 0, the boundary condition Ug) = A, demands
Ul = A +1taghy = A,.
Thisleadsto | 'ayby =0 or by =0.And (12) isreduced to

t
US)ZA1+51LA1k+'af‘g>bl(ak- bk ). (13

The other boundary condition U I(_t) = B; demands

T !f“g[bl(aL -bt)|=8,.

It
Hence at‘;bl(aL - b"):O.Since | tagb,t 0, else Ulgt) ° 0,s0wehave

L L
a-b

=0.
a-b

Since b:a'l,thismay be written as

2L
a2 1:0.
a“-1

The left hand side is a polynomial of a with degree 2L - 2, which has 2L - 2 roots if it has



solutions.
g .2
Now suppose }~ >1,then a=- 94 8‘39 - 1<0 isarea number, and
2 2 \e2g

=aL'l+aL‘ 2b+aL-3b2+m+abL-2+bL-l

zat"t+ab3+ab- 4 +a B g

:a-L+1(a2L-2+a2L-4+___+a4+a2 +1)1 0

L+3 L+1

unless a =0. Consequently, for the equation to have a solution, %‘ cannot be greater than 1. Alsoin

g

1 1. Hence it must be that }E <l.Let

view of (9) and (10), ‘%

2 _ ,
a:_g+i 1_@9 :p+iq:e|q7 b= p-iq:e'lq,
2 e2g
where
g 2o
=-=, =./1-¢== 10,
p > q gzz
and
— a1 d o -
g =tan —p, sng=q* 0, cox =p?1l.
Then
aL _ bL :eiLq _ e—iLq :2isinLq, (14)
a- b=2isng, (25)
L L
and 22— 0 implies
Lqg =np,qn=%, n=i],2,...,i(L—1). (16)

Substituting (14) ~ (16) into (13), we get the possible solutions:
sinkq,
sing,

A
U(t):A1+BlL Lk+1 tagbyy

2., %(L-1); k=0,2,2,.., L

>
1
I+
j_\
I+

where
| ,=1- 2d(1- cosy,). (17)

By superposition, we obtain the general solution
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sinknp
i L-1 —
Ul = m B A 31 by, —]
n=1 sn 2
L

i L-1
= Aol LAl k+§|;Dnsink% (18)
n=1

k=0,12.,L;t=012..,

where

— 2aObln

gnm
L

n=12,..,(L-1)

n

are L- 1 coefficientsto be determined by theinitial conditions of the system.

Suppose the initial condition is given by Ul((o) = g(k), k=012,..,L,then

L-1
VO = A +ck+§ DnsinknTp:g(k).
n=1
Hence
L1 knp
a DnS'”T: g(k)- (A +Cik) = f(K), (19)
n=1

and D,, can be determined by the orthogonality formulas that will be derived in the next section.

We remark that since the boundary conditions always demand b, =0, by (11), we have

SRR N

Then the requirement

L L
a -b -0
a-b

isequivalentto b =0.
We now return to (8),
b, +0- 2d)by +b g =1b}, k=1,2,.., L-1.

This may be written in form of a system of equations

by +(1- 2d )b, +b, =1y

b+ Q- 2d)b,+dbg=1b,

b ,+@-2d)b, ;+db =Ib ;.
Incase by =Db; =0, theabove system may also be written as
Ab =lb,

where



éaél-Zd) d 0 0 - - 0
¢d @2)d 0 - -~ O
A:g
¢ 0 0 0 O d @ 2d)
& 0 O 0 O 0 d

a, o

@bl =

b:QZ _

G: :'

ébHE

The eigenvalue of A isknown to be [4]

p

|y =1 2d)+ 2d cosm> =1 20&- cos P2
L e L g

which is same as (17), with corresponding eigenvectors

. .2 . \L-1 0
b, =colg§nm,snﬂ, ~,snﬂ9, n=12..L-1,

e L L L 7]
so that thek-th termin b, (corresponding to n-th eigenvector) is

bn,kzgnkTrp, k=12, ..L-1.

The solution of (1) isthen

U,St) =a,b, =1 },aosink%, n=12..L-1
By superposition, we obtain the same results as (18)

B, - L1 kny
t) _ 27t ; p _ -
Uls)—A1+1TA1k+alnDnsmT, k=012..L. t=012,... .

n=1

o
[ R PN B P

d
- 2d)g y\ 4

3. Orthogonality formulas of the eigenvectors
Before we can solve any difference equation arising from actual heat transfer problem by means of

(20)

(1)

IE)

(18) and (19), we need some auxiliary formulas that concern the orthogonality properties of the

eigenvectorsin (21). Some of these formulas may be known in the literature, but are included here for

the sake of completeness.

Formulal

k=1 L ¢-1 meven,
L1k I P
ésin rlip ::,cot 2L m odd,
k=1 {1 o m even

Proof: Since Dk = g (k+k _ gika - dka (eiq - 1), we have

L-1 L-1 . iLg _ .iq
eka-_1 2pg_& -€°
k=1 gl -1xa eld-1

(22)



Let q =m—Lp,and notethat €' =™ =(- 7)™, we seethat

a&d 40
9 | o7 (e 2]
é_eikq _- (G'q_- (- 1)m): § g
k=1 elq - 1 |& .|ﬂ
e 2 - e 2
When misodd, it becomes
q
L-1 . - 2C0S—
Jeka = 2 —jcotd,
k=1 2ismci
2
and when miseven,
L-1 .
g el=1
k=1
Hence
Ll Kk knp 6 1 icot™e dd
ég%osT”pﬂsinﬂ?:% 1t Mot
k=1€ 2% m even.

By equating the real and imaginary parts separately, we obtain the desired results.

Formula 2.
i1 0 ntm
L-1 k K 1 )
é‘sin—[p sm—rlip :% L
~ 1 — n=m.
k=1 i
Proof: Since
L-1 L-1 )
3 snk® gnkmp _ 1.4 é%osk(n m)p cosk(ner})0
k=1 L 2 k=1 € L L 1)
weseethat for n1 m,
L-1
ésin—knp snX™ _
k=1 L
For n=m,
L-1 L-1 N
3 sn2EMO_12a"% oMPO_1 5. 1=t
¢
k=1 e L g 2,6 L g 2 2

This completes the proof.
As adirect consequence, we have the following

Formula 3.
1

—

-1

kmp sn knp L

sn ~r-=p_.
n L L 2 M

D
1

5
a

n=1

7 QDo

Formula4.



L. lcsc2m m odd,
2 2

i
Lélkcosr?:é(—rrp 94 2L
e ebeoy L m even,
i 2
i L mp
¢ —cot——  m odd,
Lélks.néﬂrrp ot 272
e el L™ even
T 2 2L
Proof: By (22), let h(g)= § "9 ==— , we have
k=1 ed-1

k=1 eld-1 (eiq . 1)2 .
Hence
L1 iLg 2 _iq iq( iLq _ .iq )Q
éke'kq:L.e _gg Lele e .
k=1 elq -1 gelq -1 (elq - 1)2 B

LeiLq eiq (1_ eiLq )
=__ _ 5
elq = l (elq - 1)

Let g =m—f,weseethatwhenmisodd,
I_’éz-llke”‘q oL, 2d
k=1 ed-1 (elq 1)2
L4
_ -q Le 2-q . 2 :
e2-g 2 ?;2‘% e i

- Lé%osm— jsin TR 9
__ € 2L 2L g, 1
2|s|nm - 25inZﬂ
2L 2
—L— lcsc,2 m |—cotﬂ,

and when mis even,

In summary,

(23

81
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L-lcsczmﬂhcotE m odd,
2 2 L 2L

i
st k . knmpo_§
akgecosﬂﬂsnﬂgz} 2
e e L Lo j Ll m even.
i 2 2 2L
By equating the real and imaginary parts separately, we obtain the desired results.
Formulas.
[
L1 wp | 2 Ecscz% m odd,
a k? cos——=1 %
k= L L™ m even,
T 2 2 2L
i1 )
L1 oot P &2 2™ g,
st 2 knp _12 77 2L & 2L g
a sm—L =1 1
k=t ! 2ot m even
1 2 2L
L-1

L-1 .
Proof: Let g(g)= & ke, then gdg)= & ik%€*9 . By (23),
k=1 k=1
L iLq iq 1- iLq
o)== +e_( ez),
e'-1 (elq R l)

we have
)= i’ iddLeld
gdd-1 (eiQ_1)2
A0 [ Qila ). 5 alla 40 A [e el "R We|
+|e(1e)|Lee 2|ee(1e)

- 1f e -of

é:lkze”‘q _ L_ZeiLq +eiq (1 eiLq)- 2Le!M9eld 2ei2q(1- eiLq)_
mp

Let q =——, we see that whenmis odd,

Hence

1 2 iq iq i2q
3 K2elka = L + 2e . +2Le™ 4e
k=1 ed-1 (elq _ 1)2 (elq - 1)3




2 .
—%-—cscznp |§cot2L b %2 znzqu,
e o
and when miseven,
EL 1>, -2Led
k=1 eiq -1 (eiq _ 1)2
gcosm |sin%
_ 2L g, L
2|sinm 25|nZm
2L 2L
2
L= L m|
et i
In summary,
112
L1 iL—L 2P +|1cotmp(j;a?_2 2MP O 1 odd
ékzg%osm_pﬂsinm—pg:} 2 2 Le g
k1 € L Lo L2 L_,m 2 mp
i - —+—CsC® ——- i—cot—— m even
t 2 2 2L 2 2L

By equating the real and imaginary parts separately, we obtain the desired results.
4. Solutionsand Examples
The results of the preceding sections may be summarized into the following theorems.

Theorem 1. The solution of

vt u=apf), - 200 +0 ), ) (24)
isgiven by
) ;1
UIE‘):A1+¥k+a|tnDns'nk%, k=012.,L; t=012.., (25
n=1
where
ln=1- 20F- cos® 2 n=12..L-1. (26)
e Lg

AL:U(()t) and B; :UI(_t) are the boundary values of the system. The coefficients D, may be
obtained by

L

m

f(k); m=12..,L-1, 27

o

where
f(k)=g(k)- (A +Cik) 29
and g(k) = UI((O) istheinitial value of the system.
Theorem 2. Theterminal valuesof b (thatis, by and b )intheequation
by +@-2d)b, +b,=1by, k=1,2,..,L-1
are always equal to O regardless of the boundary conditions.
Example 1: Suppose that a thin metal rod 1 meter long with insulated lateral surface has uniform

initial temperature Ul((o) =40. Attime t3 0, the left end (set as the origin of the coordinates) isin



contact with aheat sourceof U =30 and theright end isin contact with a heat source of U =50 . We
will treat our rod as alumped rod and try to find the temperature U lgt) for t3 0, where we take every
1 cm of thelength L as atesting pointk (thus, k =0,1, 2, ..., 100 ).

In our example, we suppose d =0.25.

Solution: The difference equation is given by

vty =02 ), wull)), k=012..,100; t=012... .
And the solution, by (25), after substltutlng the boundary conditions, isfound to be
99
Ul =30+02k+§ | | D, sin 2
n=1 100

, k=0,12.,100; t=012...

where | =1- o.5"$‘i- cosﬁgzo.SglﬂosEg, n=12,..99.At t=0,wehave
e 100 o e 100 g

99
20+02k+ § D, sn~<P =40,
n=1 100
hence

99
2 D,$n<™ _10_ 02k = £ (k).
a =m0

Applying (27) and formulas 1 and 4,

99
D, =—2 § (10- 0.2k)sin <P
m :
I1000t£- 0. ZXQCOt—p =0 m odd,
_ I 200 2 200
=0.02" | 100
I 0.2~ cot P m even,
i 2
or
i 0 m odd,
Dm = |l mp
0.2cot—— m even.
i 200
Hence the total solution becomes
(t) ¥ x np np . knp
U/ =30+02k +0.2 g .Sgi+cos —: cot—sin—-—,
neven® € 100 g 200 100

k=0,4,2.,10; t=012... .

Example 2: If initially the left end of the metal rod in the above problem isin contact with a heat
sourceof U =90 and the right end is in contact with a heat source of U =10 for a very long time
(so that it has been reached the thermal equilibrium or steady state), rework the problem with the
remaining situations unchanged.

Solution: Before t =0, the systemisin steady state, so it satisfies the equation



ul) = Ay +Cok
Then with U(()t) =A) =90 and Ul(t30:90+100C0 =10,wehave Cy =-0.8. Theinitial conditionis
then Ulgo) =90- 0.8« =g(k). Henceat t =0, we have

99 knp

30+02k+ 3 D,sn——=90- 0.8k,
a Pn 100

or

Applying (27),

=10 cotm m odd,
200

—cot—— m even,
or

. 0.2cot—— m odd,

m
cot—— m even.

Hence the total solution becomes

Ul =30+02k +02 & ® cot P gn KO
a 0.5 +cos cot sin
noddgo 200 100

go 58'i+ cos—; cot-in kﬂ

0

200 100 ’

n even

k=0,12.,10; t=012... .
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